Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-15x^{2}-7+9+5x
Combine 2x^{2} and -17x^{2} to get -15x^{2}.
-15x^{2}+2+5x
Add -7 and 9 to get 2.
factor(-15x^{2}-7+9+5x)
Combine 2x^{2} and -17x^{2} to get -15x^{2}.
factor(-15x^{2}+2+5x)
Add -7 and 9 to get 2.
-15x^{2}+5x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-15\right)\times 2}}{2\left(-15\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\left(-15\right)\times 2}}{2\left(-15\right)}
Square 5.
x=\frac{-5±\sqrt{25+60\times 2}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-5±\sqrt{25+120}}{2\left(-15\right)}
Multiply 60 times 2.
x=\frac{-5±\sqrt{145}}{2\left(-15\right)}
Add 25 to 120.
x=\frac{-5±\sqrt{145}}{-30}
Multiply 2 times -15.
x=\frac{\sqrt{145}-5}{-30}
Now solve the equation x=\frac{-5±\sqrt{145}}{-30} when ± is plus. Add -5 to \sqrt{145}.
x=-\frac{\sqrt{145}}{30}+\frac{1}{6}
Divide -5+\sqrt{145} by -30.
x=\frac{-\sqrt{145}-5}{-30}
Now solve the equation x=\frac{-5±\sqrt{145}}{-30} when ± is minus. Subtract \sqrt{145} from -5.
x=\frac{\sqrt{145}}{30}+\frac{1}{6}
Divide -5-\sqrt{145} by -30.
-15x^{2}+5x+2=-15\left(x-\left(-\frac{\sqrt{145}}{30}+\frac{1}{6}\right)\right)\left(x-\left(\frac{\sqrt{145}}{30}+\frac{1}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{6}-\frac{\sqrt{145}}{30} for x_{1} and \frac{1}{6}+\frac{\sqrt{145}}{30} for x_{2}.