Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-13x-34=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\left(-34\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -13 for b, and -34 for c in the quadratic formula.
x=\frac{13±21}{4}
Do the calculations.
x=\frac{17}{2} x=-2
Solve the equation x=\frac{13±21}{4} when ± is plus and when ± is minus.
2\left(x-\frac{17}{2}\right)\left(x+2\right)\geq 0
Rewrite the inequality by using the obtained solutions.
x-\frac{17}{2}\leq 0 x+2\leq 0
For the product to be ≥0, x-\frac{17}{2} and x+2 have to be both ≤0 or both ≥0. Consider the case when x-\frac{17}{2} and x+2 are both ≤0.
x\leq -2
The solution satisfying both inequalities is x\leq -2.
x+2\geq 0 x-\frac{17}{2}\geq 0
Consider the case when x-\frac{17}{2} and x+2 are both ≥0.
x\geq \frac{17}{2}
The solution satisfying both inequalities is x\geq \frac{17}{2}.
x\leq -2\text{; }x\geq \frac{17}{2}
The final solution is the union of the obtained solutions.