Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-\frac{4}{3}x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -\frac{4}{3} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times 2\left(-2\right)}}{2\times 2}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{160}{9}}}{2\times 2}
Add \frac{16}{9} to 16.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{4\sqrt{10}}{3}}{2\times 2}
Take the square root of \frac{160}{9}.
x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{2\times 2}
The opposite of -\frac{4}{3} is \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{10}+4}{3\times 4}
Now solve the equation x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{4} when ± is plus. Add \frac{4}{3} to \frac{4\sqrt{10}}{3}.
x=\frac{\sqrt{10}+1}{3}
Divide \frac{4+4\sqrt{10}}{3} by 4.
x=\frac{4-4\sqrt{10}}{3\times 4}
Now solve the equation x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{4} when ± is minus. Subtract \frac{4\sqrt{10}}{3} from \frac{4}{3}.
x=\frac{1-\sqrt{10}}{3}
Divide \frac{4-4\sqrt{10}}{3} by 4.
x=\frac{\sqrt{10}+1}{3} x=\frac{1-\sqrt{10}}{3}
The equation is now solved.
2x^{2}-\frac{4}{3}x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-\frac{4}{3}x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
2x^{2}-\frac{4}{3}x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
2x^{2}-\frac{4}{3}x=2
Subtract -2 from 0.
\frac{2x^{2}-\frac{4}{3}x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{\frac{4}{3}}{2}\right)x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{2}{3}x=\frac{2}{2}
Divide -\frac{4}{3} by 2.
x^{2}-\frac{2}{3}x=1
Divide 2 by 2.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=1+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=1+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{10}{9}
Add 1 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{10}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{10}}{3} x-\frac{1}{3}=-\frac{\sqrt{10}}{3}
Simplify.
x=\frac{\sqrt{10}+1}{3} x=\frac{1-\sqrt{10}}{3}
Add \frac{1}{3} to both sides of the equation.