Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-22x=-11
Subtract 22x from both sides.
2x^{2}-22x+11=0
Add 11 to both sides.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 2\times 11}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -22 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 2\times 11}}{2\times 2}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-8\times 11}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-22\right)±\sqrt{484-88}}{2\times 2}
Multiply -8 times 11.
x=\frac{-\left(-22\right)±\sqrt{396}}{2\times 2}
Add 484 to -88.
x=\frac{-\left(-22\right)±6\sqrt{11}}{2\times 2}
Take the square root of 396.
x=\frac{22±6\sqrt{11}}{2\times 2}
The opposite of -22 is 22.
x=\frac{22±6\sqrt{11}}{4}
Multiply 2 times 2.
x=\frac{6\sqrt{11}+22}{4}
Now solve the equation x=\frac{22±6\sqrt{11}}{4} when ± is plus. Add 22 to 6\sqrt{11}.
x=\frac{3\sqrt{11}+11}{2}
Divide 22+6\sqrt{11} by 4.
x=\frac{22-6\sqrt{11}}{4}
Now solve the equation x=\frac{22±6\sqrt{11}}{4} when ± is minus. Subtract 6\sqrt{11} from 22.
x=\frac{11-3\sqrt{11}}{2}
Divide 22-6\sqrt{11} by 4.
x=\frac{3\sqrt{11}+11}{2} x=\frac{11-3\sqrt{11}}{2}
The equation is now solved.
2x^{2}-22x=-11
Subtract 22x from both sides.
\frac{2x^{2}-22x}{2}=-\frac{11}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{22}{2}\right)x=-\frac{11}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-11x=-\frac{11}{2}
Divide -22 by 2.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-\frac{11}{2}+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-\frac{11}{2}+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{99}{4}
Add -\frac{11}{2} to \frac{121}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{2}\right)^{2}=\frac{99}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{99}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{3\sqrt{11}}{2} x-\frac{11}{2}=-\frac{3\sqrt{11}}{2}
Simplify.
x=\frac{3\sqrt{11}+11}{2} x=\frac{11-3\sqrt{11}}{2}
Add \frac{11}{2} to both sides of the equation.