Solve for x
x = \frac{3 \sqrt{11} + 11}{2} \approx 10.474937186
x=\frac{11-3\sqrt{11}}{2}\approx 0.525062814
Graph
Share
Copied to clipboard
2x^{2}-22x=-11
Subtract 22x from both sides.
2x^{2}-22x+11=0
Add 11 to both sides.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 2\times 11}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -22 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 2\times 11}}{2\times 2}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-8\times 11}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-22\right)±\sqrt{484-88}}{2\times 2}
Multiply -8 times 11.
x=\frac{-\left(-22\right)±\sqrt{396}}{2\times 2}
Add 484 to -88.
x=\frac{-\left(-22\right)±6\sqrt{11}}{2\times 2}
Take the square root of 396.
x=\frac{22±6\sqrt{11}}{2\times 2}
The opposite of -22 is 22.
x=\frac{22±6\sqrt{11}}{4}
Multiply 2 times 2.
x=\frac{6\sqrt{11}+22}{4}
Now solve the equation x=\frac{22±6\sqrt{11}}{4} when ± is plus. Add 22 to 6\sqrt{11}.
x=\frac{3\sqrt{11}+11}{2}
Divide 22+6\sqrt{11} by 4.
x=\frac{22-6\sqrt{11}}{4}
Now solve the equation x=\frac{22±6\sqrt{11}}{4} when ± is minus. Subtract 6\sqrt{11} from 22.
x=\frac{11-3\sqrt{11}}{2}
Divide 22-6\sqrt{11} by 4.
x=\frac{3\sqrt{11}+11}{2} x=\frac{11-3\sqrt{11}}{2}
The equation is now solved.
2x^{2}-22x=-11
Subtract 22x from both sides.
\frac{2x^{2}-22x}{2}=-\frac{11}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{22}{2}\right)x=-\frac{11}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-11x=-\frac{11}{2}
Divide -22 by 2.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-\frac{11}{2}+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-\frac{11}{2}+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{99}{4}
Add -\frac{11}{2} to \frac{121}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{2}\right)^{2}=\frac{99}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{99}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{3\sqrt{11}}{2} x-\frac{11}{2}=-\frac{3\sqrt{11}}{2}
Simplify.
x=\frac{3\sqrt{11}+11}{2} x=\frac{11-3\sqrt{11}}{2}
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}