Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=9
Graph
Share
Copied to clipboard
2x^{2}-13x=45
Subtract 13x from both sides.
2x^{2}-13x-45=0
Subtract 45 from both sides.
a+b=-13 ab=2\left(-45\right)=-90
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-45. To find a and b, set up a system to be solved.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Calculate the sum for each pair.
a=-18 b=5
The solution is the pair that gives sum -13.
\left(2x^{2}-18x\right)+\left(5x-45\right)
Rewrite 2x^{2}-13x-45 as \left(2x^{2}-18x\right)+\left(5x-45\right).
2x\left(x-9\right)+5\left(x-9\right)
Factor out 2x in the first and 5 in the second group.
\left(x-9\right)\left(2x+5\right)
Factor out common term x-9 by using distributive property.
x=9 x=-\frac{5}{2}
To find equation solutions, solve x-9=0 and 2x+5=0.
2x^{2}-13x=45
Subtract 13x from both sides.
2x^{2}-13x-45=0
Subtract 45 from both sides.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\left(-45\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -13 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\left(-45\right)}}{2\times 2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-8\left(-45\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-13\right)±\sqrt{169+360}}{2\times 2}
Multiply -8 times -45.
x=\frac{-\left(-13\right)±\sqrt{529}}{2\times 2}
Add 169 to 360.
x=\frac{-\left(-13\right)±23}{2\times 2}
Take the square root of 529.
x=\frac{13±23}{2\times 2}
The opposite of -13 is 13.
x=\frac{13±23}{4}
Multiply 2 times 2.
x=\frac{36}{4}
Now solve the equation x=\frac{13±23}{4} when ± is plus. Add 13 to 23.
x=9
Divide 36 by 4.
x=-\frac{10}{4}
Now solve the equation x=\frac{13±23}{4} when ± is minus. Subtract 23 from 13.
x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x=9 x=-\frac{5}{2}
The equation is now solved.
2x^{2}-13x=45
Subtract 13x from both sides.
\frac{2x^{2}-13x}{2}=\frac{45}{2}
Divide both sides by 2.
x^{2}-\frac{13}{2}x=\frac{45}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=\frac{45}{2}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{45}{2}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{529}{16}
Add \frac{45}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{4}\right)^{2}=\frac{529}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{529}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{23}{4} x-\frac{13}{4}=-\frac{23}{4}
Simplify.
x=9 x=-\frac{5}{2}
Add \frac{13}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}