Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+90=24
Subtract 78 from 102 to get 24.
2x^{2}=24-90
Subtract 90 from both sides.
2x^{2}=-66
Subtract 90 from 24 to get -66.
x^{2}=\frac{-66}{2}
Divide both sides by 2.
x^{2}=-33
Divide -66 by 2 to get -33.
x=\sqrt{33}i x=-\sqrt{33}i
The equation is now solved.
2x^{2}+90=24
Subtract 78 from 102 to get 24.
2x^{2}+90-24=0
Subtract 24 from both sides.
2x^{2}+66=0
Subtract 24 from 90 to get 66.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 66}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and 66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 66}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\times 66}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{-528}}{2\times 2}
Multiply -8 times 66.
x=\frac{0±4\sqrt{33}i}{2\times 2}
Take the square root of -528.
x=\frac{0±4\sqrt{33}i}{4}
Multiply 2 times 2.
x=\sqrt{33}i
Now solve the equation x=\frac{0±4\sqrt{33}i}{4} when ± is plus.
x=-\sqrt{33}i
Now solve the equation x=\frac{0±4\sqrt{33}i}{4} when ± is minus.
x=\sqrt{33}i x=-\sqrt{33}i
The equation is now solved.