Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+8x+94=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+8x+94-8=8-8
Subtract 8 from both sides of the equation.
2x^{2}+8x+94-8=0
Subtracting 8 from itself leaves 0.
2x^{2}+8x+86=0
Subtract 8 from 94.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 86}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and 86 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\times 86}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\times 86}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64-688}}{2\times 2}
Multiply -8 times 86.
x=\frac{-8±\sqrt{-624}}{2\times 2}
Add 64 to -688.
x=\frac{-8±4\sqrt{39}i}{2\times 2}
Take the square root of -624.
x=\frac{-8±4\sqrt{39}i}{4}
Multiply 2 times 2.
x=\frac{-8+4\sqrt{39}i}{4}
Now solve the equation x=\frac{-8±4\sqrt{39}i}{4} when ± is plus. Add -8 to 4i\sqrt{39}.
x=-2+\sqrt{39}i
Divide -8+4i\sqrt{39} by 4.
x=\frac{-4\sqrt{39}i-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{39}i}{4} when ± is minus. Subtract 4i\sqrt{39} from -8.
x=-\sqrt{39}i-2
Divide -8-4i\sqrt{39} by 4.
x=-2+\sqrt{39}i x=-\sqrt{39}i-2
The equation is now solved.
2x^{2}+8x+94=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+8x+94-94=8-94
Subtract 94 from both sides of the equation.
2x^{2}+8x=8-94
Subtracting 94 from itself leaves 0.
2x^{2}+8x=-86
Subtract 94 from 8.
\frac{2x^{2}+8x}{2}=-\frac{86}{2}
Divide both sides by 2.
x^{2}+\frac{8}{2}x=-\frac{86}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4x=-\frac{86}{2}
Divide 8 by 2.
x^{2}+4x=-43
Divide -86 by 2.
x^{2}+4x+2^{2}=-43+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-43+4
Square 2.
x^{2}+4x+4=-39
Add -43 to 4.
\left(x+2\right)^{2}=-39
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-39}
Take the square root of both sides of the equation.
x+2=\sqrt{39}i x+2=-\sqrt{39}i
Simplify.
x=-2+\sqrt{39}i x=-\sqrt{39}i-2
Subtract 2 from both sides of the equation.