Solve for x
x=-8
x=4
Graph
Share
Copied to clipboard
2x^{2}+8x+5-69=0
Subtract 69 from both sides.
2x^{2}+8x-64=0
Subtract 69 from 5 to get -64.
x^{2}+4x-32=0
Divide both sides by 2.
a+b=4 ab=1\left(-32\right)=-32
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-32. To find a and b, set up a system to be solved.
-1,32 -2,16 -4,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -32.
-1+32=31 -2+16=14 -4+8=4
Calculate the sum for each pair.
a=-4 b=8
The solution is the pair that gives sum 4.
\left(x^{2}-4x\right)+\left(8x-32\right)
Rewrite x^{2}+4x-32 as \left(x^{2}-4x\right)+\left(8x-32\right).
x\left(x-4\right)+8\left(x-4\right)
Factor out x in the first and 8 in the second group.
\left(x-4\right)\left(x+8\right)
Factor out common term x-4 by using distributive property.
x=4 x=-8
To find equation solutions, solve x-4=0 and x+8=0.
2x^{2}+8x+5=69
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+8x+5-69=69-69
Subtract 69 from both sides of the equation.
2x^{2}+8x+5-69=0
Subtracting 69 from itself leaves 0.
2x^{2}+8x-64=0
Subtract 69 from 5.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-64\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\left(-64\right)}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\left(-64\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64+512}}{2\times 2}
Multiply -8 times -64.
x=\frac{-8±\sqrt{576}}{2\times 2}
Add 64 to 512.
x=\frac{-8±24}{2\times 2}
Take the square root of 576.
x=\frac{-8±24}{4}
Multiply 2 times 2.
x=\frac{16}{4}
Now solve the equation x=\frac{-8±24}{4} when ± is plus. Add -8 to 24.
x=4
Divide 16 by 4.
x=-\frac{32}{4}
Now solve the equation x=\frac{-8±24}{4} when ± is minus. Subtract 24 from -8.
x=-8
Divide -32 by 4.
x=4 x=-8
The equation is now solved.
2x^{2}+8x+5=69
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+8x+5-5=69-5
Subtract 5 from both sides of the equation.
2x^{2}+8x=69-5
Subtracting 5 from itself leaves 0.
2x^{2}+8x=64
Subtract 5 from 69.
\frac{2x^{2}+8x}{2}=\frac{64}{2}
Divide both sides by 2.
x^{2}+\frac{8}{2}x=\frac{64}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4x=\frac{64}{2}
Divide 8 by 2.
x^{2}+4x=32
Divide 64 by 2.
x^{2}+4x+2^{2}=32+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=32+4
Square 2.
x^{2}+4x+4=36
Add 32 to 4.
\left(x+2\right)^{2}=36
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x+2=6 x+2=-6
Simplify.
x=4 x=-8
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}