Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-5x+6=0
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\times 6}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\times 6}}{2\times 6}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\times 6}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-5\right)±\sqrt{25-144}}{2\times 6}
Multiply -24 times 6.
x=\frac{-\left(-5\right)±\sqrt{-119}}{2\times 6}
Add 25 to -144.
x=\frac{-\left(-5\right)±\sqrt{119}i}{2\times 6}
Take the square root of -119.
x=\frac{5±\sqrt{119}i}{2\times 6}
The opposite of -5 is 5.
x=\frac{5±\sqrt{119}i}{12}
Multiply 2 times 6.
x=\frac{5+\sqrt{119}i}{12}
Now solve the equation x=\frac{5±\sqrt{119}i}{12} when ± is plus. Add 5 to i\sqrt{119}.
x=\frac{-\sqrt{119}i+5}{12}
Now solve the equation x=\frac{5±\sqrt{119}i}{12} when ± is minus. Subtract i\sqrt{119} from 5.
x=\frac{5+\sqrt{119}i}{12} x=\frac{-\sqrt{119}i+5}{12}
The equation is now solved.
6x^{2}-5x+6=0
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}-5x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{6x^{2}-5x}{6}=-\frac{6}{6}
Divide both sides by 6.
x^{2}-\frac{5}{6}x=-\frac{6}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{5}{6}x=-1
Divide -6 by 6.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=-1+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{6}x+\frac{25}{144}=-1+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{6}x+\frac{25}{144}=-\frac{119}{144}
Add -1 to \frac{25}{144}.
\left(x-\frac{5}{12}\right)^{2}=-\frac{119}{144}
Factor x^{2}-\frac{5}{6}x+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{-\frac{119}{144}}
Take the square root of both sides of the equation.
x-\frac{5}{12}=\frac{\sqrt{119}i}{12} x-\frac{5}{12}=-\frac{\sqrt{119}i}{12}
Simplify.
x=\frac{5+\sqrt{119}i}{12} x=\frac{-\sqrt{119}i+5}{12}
Add \frac{5}{12} to both sides of the equation.