Solve for x
x=-19
x=3
Graph
Share
Copied to clipboard
x^{2}+16x-57=0
Divide both sides by 2.
a+b=16 ab=1\left(-57\right)=-57
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-57. To find a and b, set up a system to be solved.
-1,57 -3,19
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -57.
-1+57=56 -3+19=16
Calculate the sum for each pair.
a=-3 b=19
The solution is the pair that gives sum 16.
\left(x^{2}-3x\right)+\left(19x-57\right)
Rewrite x^{2}+16x-57 as \left(x^{2}-3x\right)+\left(19x-57\right).
x\left(x-3\right)+19\left(x-3\right)
Factor out x in the first and 19 in the second group.
\left(x-3\right)\left(x+19\right)
Factor out common term x-3 by using distributive property.
x=3 x=-19
To find equation solutions, solve x-3=0 and x+19=0.
2x^{2}+32x-114=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\times 2\left(-114\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 32 for b, and -114 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 2\left(-114\right)}}{2\times 2}
Square 32.
x=\frac{-32±\sqrt{1024-8\left(-114\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-32±\sqrt{1024+912}}{2\times 2}
Multiply -8 times -114.
x=\frac{-32±\sqrt{1936}}{2\times 2}
Add 1024 to 912.
x=\frac{-32±44}{2\times 2}
Take the square root of 1936.
x=\frac{-32±44}{4}
Multiply 2 times 2.
x=\frac{12}{4}
Now solve the equation x=\frac{-32±44}{4} when ± is plus. Add -32 to 44.
x=3
Divide 12 by 4.
x=-\frac{76}{4}
Now solve the equation x=\frac{-32±44}{4} when ± is minus. Subtract 44 from -32.
x=-19
Divide -76 by 4.
x=3 x=-19
The equation is now solved.
2x^{2}+32x-114=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+32x-114-\left(-114\right)=-\left(-114\right)
Add 114 to both sides of the equation.
2x^{2}+32x=-\left(-114\right)
Subtracting -114 from itself leaves 0.
2x^{2}+32x=114
Subtract -114 from 0.
\frac{2x^{2}+32x}{2}=\frac{114}{2}
Divide both sides by 2.
x^{2}+\frac{32}{2}x=\frac{114}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+16x=\frac{114}{2}
Divide 32 by 2.
x^{2}+16x=57
Divide 114 by 2.
x^{2}+16x+8^{2}=57+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=57+64
Square 8.
x^{2}+16x+64=121
Add 57 to 64.
\left(x+8\right)^{2}=121
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{121}
Take the square root of both sides of the equation.
x+8=11 x+8=-11
Simplify.
x=3 x=-19
Subtract 8 from both sides of the equation.
x ^ 2 +16x -57 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -16 rs = -57
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -8 - u s = -8 + u
Two numbers r and s sum up to -16 exactly when the average of the two numbers is \frac{1}{2}*-16 = -8. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-8 - u) (-8 + u) = -57
To solve for unknown quantity u, substitute these in the product equation rs = -57
64 - u^2 = -57
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -57-64 = -121
Simplify the expression by subtracting 64 on both sides
u^2 = 121 u = \pm\sqrt{121} = \pm 11
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-8 - 11 = -19 s = -8 + 11 = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}