Solve for x (complex solution)
x=\sqrt{65}-8\approx 0.062257748
x=-\left(\sqrt{65}+8\right)\approx -16.062257748
Solve for x
x=\sqrt{65}-8\approx 0.062257748
x=-\sqrt{65}-8\approx -16.062257748
Graph
Share
Copied to clipboard
2x^{2}+32x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+32x-2=2-2
Subtract 2 from both sides of the equation.
2x^{2}+32x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-32±\sqrt{32^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 32 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 2\left(-2\right)}}{2\times 2}
Square 32.
x=\frac{-32±\sqrt{1024-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-32±\sqrt{1024+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-32±\sqrt{1040}}{2\times 2}
Add 1024 to 16.
x=\frac{-32±4\sqrt{65}}{2\times 2}
Take the square root of 1040.
x=\frac{-32±4\sqrt{65}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{65}-32}{4}
Now solve the equation x=\frac{-32±4\sqrt{65}}{4} when ± is plus. Add -32 to 4\sqrt{65}.
x=\sqrt{65}-8
Divide -32+4\sqrt{65} by 4.
x=\frac{-4\sqrt{65}-32}{4}
Now solve the equation x=\frac{-32±4\sqrt{65}}{4} when ± is minus. Subtract 4\sqrt{65} from -32.
x=-\sqrt{65}-8
Divide -32-4\sqrt{65} by 4.
x=\sqrt{65}-8 x=-\sqrt{65}-8
The equation is now solved.
2x^{2}+32x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+32x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}+\frac{32}{2}x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+16x=\frac{2}{2}
Divide 32 by 2.
x^{2}+16x=1
Divide 2 by 2.
x^{2}+16x+8^{2}=1+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=1+64
Square 8.
x^{2}+16x+64=65
Add 1 to 64.
\left(x+8\right)^{2}=65
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{65}
Take the square root of both sides of the equation.
x+8=\sqrt{65} x+8=-\sqrt{65}
Simplify.
x=\sqrt{65}-8 x=-\sqrt{65}-8
Subtract 8 from both sides of the equation.
2x^{2}+32x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}+32x-2=2-2
Subtract 2 from both sides of the equation.
2x^{2}+32x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-32±\sqrt{32^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 32 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 2\left(-2\right)}}{2\times 2}
Square 32.
x=\frac{-32±\sqrt{1024-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-32±\sqrt{1024+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-32±\sqrt{1040}}{2\times 2}
Add 1024 to 16.
x=\frac{-32±4\sqrt{65}}{2\times 2}
Take the square root of 1040.
x=\frac{-32±4\sqrt{65}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{65}-32}{4}
Now solve the equation x=\frac{-32±4\sqrt{65}}{4} when ± is plus. Add -32 to 4\sqrt{65}.
x=\sqrt{65}-8
Divide -32+4\sqrt{65} by 4.
x=\frac{-4\sqrt{65}-32}{4}
Now solve the equation x=\frac{-32±4\sqrt{65}}{4} when ± is minus. Subtract 4\sqrt{65} from -32.
x=-\sqrt{65}-8
Divide -32-4\sqrt{65} by 4.
x=\sqrt{65}-8 x=-\sqrt{65}-8
The equation is now solved.
2x^{2}+32x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+32x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}+\frac{32}{2}x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+16x=\frac{2}{2}
Divide 32 by 2.
x^{2}+16x=1
Divide 2 by 2.
x^{2}+16x+8^{2}=1+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=1+64
Square 8.
x^{2}+16x+64=65
Add 1 to 64.
\left(x+8\right)^{2}=65
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{65}
Take the square root of both sides of the equation.
x+8=\sqrt{65} x+8=-\sqrt{65}
Simplify.
x=\sqrt{65}-8 x=-\sqrt{65}-8
Subtract 8 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}