Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+25+x^{2}=10x
Add x^{2} to both sides.
3x^{2}+25=10x
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+25-10x=0
Subtract 10x from both sides.
3x^{2}-10x+25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 25}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 25}}{2\times 3}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-12\times 25}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-10\right)±\sqrt{100-300}}{2\times 3}
Multiply -12 times 25.
x=\frac{-\left(-10\right)±\sqrt{-200}}{2\times 3}
Add 100 to -300.
x=\frac{-\left(-10\right)±10\sqrt{2}i}{2\times 3}
Take the square root of -200.
x=\frac{10±10\sqrt{2}i}{2\times 3}
The opposite of -10 is 10.
x=\frac{10±10\sqrt{2}i}{6}
Multiply 2 times 3.
x=\frac{10+10\sqrt{2}i}{6}
Now solve the equation x=\frac{10±10\sqrt{2}i}{6} when ± is plus. Add 10 to 10i\sqrt{2}.
x=\frac{5+5\sqrt{2}i}{3}
Divide 10+10i\sqrt{2} by 6.
x=\frac{-10\sqrt{2}i+10}{6}
Now solve the equation x=\frac{10±10\sqrt{2}i}{6} when ± is minus. Subtract 10i\sqrt{2} from 10.
x=\frac{-5\sqrt{2}i+5}{3}
Divide 10-10i\sqrt{2} by 6.
x=\frac{5+5\sqrt{2}i}{3} x=\frac{-5\sqrt{2}i+5}{3}
The equation is now solved.
2x^{2}+25+x^{2}=10x
Add x^{2} to both sides.
3x^{2}+25=10x
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+25-10x=0
Subtract 10x from both sides.
3x^{2}-10x=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-10x}{3}=-\frac{25}{3}
Divide both sides by 3.
x^{2}-\frac{10}{3}x=-\frac{25}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-\frac{25}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{25}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{50}{9}
Add -\frac{25}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=-\frac{50}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{-\frac{50}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{5\sqrt{2}i}{3} x-\frac{5}{3}=-\frac{5\sqrt{2}i}{3}
Simplify.
x=\frac{5+5\sqrt{2}i}{3} x=\frac{-5\sqrt{2}i+5}{3}
Add \frac{5}{3} to both sides of the equation.