Solve for x
x=-\frac{5}{6}\approx -0.833333333
Graph
Share
Copied to clipboard
2\times 2x-3=2\left(x-\frac{7}{3}\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4x-3=2\left(x-\frac{7}{3}\right)
Multiply 2 and 2 to get 4.
4x-3=2x+2\left(-\frac{7}{3}\right)
Use the distributive property to multiply 2 by x-\frac{7}{3}.
4x-3=2x+\frac{2\left(-7\right)}{3}
Express 2\left(-\frac{7}{3}\right) as a single fraction.
4x-3=2x+\frac{-14}{3}
Multiply 2 and -7 to get -14.
4x-3=2x-\frac{14}{3}
Fraction \frac{-14}{3} can be rewritten as -\frac{14}{3} by extracting the negative sign.
4x-3-2x=-\frac{14}{3}
Subtract 2x from both sides.
2x-3=-\frac{14}{3}
Combine 4x and -2x to get 2x.
2x=-\frac{14}{3}+3
Add 3 to both sides.
2x=-\frac{14}{3}+\frac{9}{3}
Convert 3 to fraction \frac{9}{3}.
2x=\frac{-14+9}{3}
Since -\frac{14}{3} and \frac{9}{3} have the same denominator, add them by adding their numerators.
2x=-\frac{5}{3}
Add -14 and 9 to get -5.
x=\frac{-\frac{5}{3}}{2}
Divide both sides by 2.
x=\frac{-5}{3\times 2}
Express \frac{-\frac{5}{3}}{2} as a single fraction.
x=\frac{-5}{6}
Multiply 3 and 2 to get 6.
x=-\frac{5}{6}
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}