Solve for B
\left\{\begin{matrix}B=\frac{6c}{2x+y}\text{, }&c\neq 0\text{ and }x\neq -\frac{y}{2}\\B\neq 0\text{, }&x=-\frac{y}{2}\text{ and }c=0\end{matrix}\right.
Solve for c
c=\frac{B\left(2x+y\right)}{6}
B\neq 0
Graph
Share
Copied to clipboard
2xB+By=6c
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by B.
\left(2x+y\right)B=6c
Combine all terms containing B.
\frac{\left(2x+y\right)B}{2x+y}=\frac{6c}{2x+y}
Divide both sides by 2x+y.
B=\frac{6c}{2x+y}
Dividing by 2x+y undoes the multiplication by 2x+y.
B=\frac{6c}{2x+y}\text{, }B\neq 0
Variable B cannot be equal to 0.
2xB+By=6c
Multiply both sides of the equation by B.
6c=2xB+By
Swap sides so that all variable terms are on the left hand side.
6c=2Bx+By
The equation is in standard form.
\frac{6c}{6}=\frac{B\left(2x+y\right)}{6}
Divide both sides by 6.
c=\frac{B\left(2x+y\right)}{6}
Dividing by 6 undoes the multiplication by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}