Solve for x
x = -\frac{91}{3} = -30\frac{1}{3} \approx -30.333333333
Graph
Share
Copied to clipboard
2x+5\left(9+\frac{4}{3}\right)=-9
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
2x+5\left(\frac{27}{3}+\frac{4}{3}\right)=-9
Convert 9 to fraction \frac{27}{3}.
2x+5\times \frac{27+4}{3}=-9
Since \frac{27}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
2x+5\times \frac{31}{3}=-9
Add 27 and 4 to get 31.
2x+\frac{5\times 31}{3}=-9
Express 5\times \frac{31}{3} as a single fraction.
2x+\frac{155}{3}=-9
Multiply 5 and 31 to get 155.
2x=-9-\frac{155}{3}
Subtract \frac{155}{3} from both sides.
2x=-\frac{27}{3}-\frac{155}{3}
Convert -9 to fraction -\frac{27}{3}.
2x=\frac{-27-155}{3}
Since -\frac{27}{3} and \frac{155}{3} have the same denominator, subtract them by subtracting their numerators.
2x=-\frac{182}{3}
Subtract 155 from -27 to get -182.
x=\frac{-\frac{182}{3}}{2}
Divide both sides by 2.
x=\frac{-182}{3\times 2}
Express \frac{-\frac{182}{3}}{2} as a single fraction.
x=\frac{-182}{6}
Multiply 3 and 2 to get 6.
x=-\frac{91}{3}
Reduce the fraction \frac{-182}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}