Solve for x
x\geq -\frac{28}{9}
Graph
Share
Copied to clipboard
2x+4-\frac{1}{2}x\geq -\frac{2}{3}
Subtract \frac{1}{2}x from both sides.
\frac{3}{2}x+4\geq -\frac{2}{3}
Combine 2x and -\frac{1}{2}x to get \frac{3}{2}x.
\frac{3}{2}x\geq -\frac{2}{3}-4
Subtract 4 from both sides.
\frac{3}{2}x\geq -\frac{2}{3}-\frac{12}{3}
Convert 4 to fraction \frac{12}{3}.
\frac{3}{2}x\geq \frac{-2-12}{3}
Since -\frac{2}{3} and \frac{12}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}x\geq -\frac{14}{3}
Subtract 12 from -2 to get -14.
x\geq -\frac{14}{3}\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}. Since \frac{3}{2} is positive, the inequality direction remains the same.
x\geq \frac{-14\times 2}{3\times 3}
Multiply -\frac{14}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{-28}{9}
Do the multiplications in the fraction \frac{-14\times 2}{3\times 3}.
x\geq -\frac{28}{9}
Fraction \frac{-28}{9} can be rewritten as -\frac{28}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}