Solve for k
k=\frac{x}{\pi }+\frac{1}{2\pi }-\frac{1}{4}
Solve for x
x=\pi k+\frac{\pi }{4}-\frac{1}{2}
Graph
Share
Copied to clipboard
4x+2=\pi +2k\times 2\pi
Multiply both sides of the equation by 2.
4x+2=\pi +4k\pi
Multiply 2 and 2 to get 4.
\pi +4k\pi =4x+2
Swap sides so that all variable terms are on the left hand side.
4k\pi =4x+2-\pi
Subtract \pi from both sides.
4\pi k=4x+2-\pi
The equation is in standard form.
\frac{4\pi k}{4\pi }=\frac{4x+2-\pi }{4\pi }
Divide both sides by 4\pi .
k=\frac{4x+2-\pi }{4\pi }
Dividing by 4\pi undoes the multiplication by 4\pi .
k=\frac{x+\frac{1}{2}}{\pi }-\frac{1}{4}
Divide 4x+2-\pi by 4\pi .
4x+2=\pi +2k\times 2\pi
Multiply both sides of the equation by 2.
4x+2=\pi +4k\pi
Multiply 2 and 2 to get 4.
4x=\pi +4k\pi -2
Subtract 2 from both sides.
4x=4\pi k+\pi -2
The equation is in standard form.
\frac{4x}{4}=\frac{4\pi k+\pi -2}{4}
Divide both sides by 4.
x=\frac{4\pi k+\pi -2}{4}
Dividing by 4 undoes the multiplication by 4.
x=\pi k+\frac{\pi }{4}-\frac{1}{2}
Divide \pi +4k\pi -2 by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}