Solve for x
x=-\frac{3}{34}\approx -0.088235294
Graph
Share
Copied to clipboard
2x+\frac{7}{16}=\frac{3}{4}-\frac{1}{8}x-\frac{2}{4}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
2x+\frac{7}{16}=\frac{3-2}{4}-\frac{1}{8}x
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
2x+\frac{7}{16}=\frac{1}{4}-\frac{1}{8}x
Subtract 2 from 3 to get 1.
2x+\frac{7}{16}+\frac{1}{8}x=\frac{1}{4}
Add \frac{1}{8}x to both sides.
\frac{17}{8}x+\frac{7}{16}=\frac{1}{4}
Combine 2x and \frac{1}{8}x to get \frac{17}{8}x.
\frac{17}{8}x=\frac{1}{4}-\frac{7}{16}
Subtract \frac{7}{16} from both sides.
\frac{17}{8}x=\frac{4}{16}-\frac{7}{16}
Least common multiple of 4 and 16 is 16. Convert \frac{1}{4} and \frac{7}{16} to fractions with denominator 16.
\frac{17}{8}x=\frac{4-7}{16}
Since \frac{4}{16} and \frac{7}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{8}x=-\frac{3}{16}
Subtract 7 from 4 to get -3.
x=-\frac{3}{16}\times \frac{8}{17}
Multiply both sides by \frac{8}{17}, the reciprocal of \frac{17}{8}.
x=\frac{-3\times 8}{16\times 17}
Multiply -\frac{3}{16} times \frac{8}{17} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-24}{272}
Do the multiplications in the fraction \frac{-3\times 8}{16\times 17}.
x=-\frac{3}{34}
Reduce the fraction \frac{-24}{272} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}