Solve for k
k=\frac{2x}{\pi }-\frac{1}{4}
Solve for x
x=\frac{\pi \left(4k+1\right)}{8}
Graph
Share
Copied to clipboard
8x+\pi =4k\pi +2\pi
Multiply both sides of the equation by 4, the least common multiple of 4,2.
4k\pi +2\pi =8x+\pi
Swap sides so that all variable terms are on the left hand side.
4k\pi =8x+\pi -2\pi
Subtract 2\pi from both sides.
4k\pi =8x-\pi
Combine \pi and -2\pi to get -\pi .
4\pi k=8x-\pi
The equation is in standard form.
\frac{4\pi k}{4\pi }=\frac{8x-\pi }{4\pi }
Divide both sides by 4\pi .
k=\frac{8x-\pi }{4\pi }
Dividing by 4\pi undoes the multiplication by 4\pi .
k=\frac{2x}{\pi }-\frac{1}{4}
Divide 8x-\pi by 4\pi .
8x+\pi =4k\pi +2\pi
Multiply both sides of the equation by 4, the least common multiple of 4,2.
8x=4k\pi +2\pi -\pi
Subtract \pi from both sides.
8x=4k\pi +\pi
Combine 2\pi and -\pi to get \pi .
8x=4\pi k+\pi
The equation is in standard form.
\frac{8x}{8}=\frac{4\pi k+\pi }{8}
Divide both sides by 8.
x=\frac{4\pi k+\pi }{8}
Dividing by 8 undoes the multiplication by 8.
x=\frac{\pi k}{2}+\frac{\pi }{8}
Divide 4\pi k+\pi by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}