Solve for k
k=\frac{x}{\pi }+\frac{3}{8}
Solve for x
x=\pi k-\frac{3\pi }{8}
Graph
Quiz
Linear Equation
5 problems similar to:
2 x + \frac { \pi } { 4 } = - \frac { \pi } { 2 } + 2 k \pi
Share
Copied to clipboard
8x+\pi =-2\pi +8k\pi
Multiply both sides of the equation by 4, the least common multiple of 4,2.
-2\pi +8k\pi =8x+\pi
Swap sides so that all variable terms are on the left hand side.
8k\pi =8x+\pi +2\pi
Add 2\pi to both sides.
8k\pi =8x+3\pi
Combine \pi and 2\pi to get 3\pi .
8\pi k=8x+3\pi
The equation is in standard form.
\frac{8\pi k}{8\pi }=\frac{8x+3\pi }{8\pi }
Divide both sides by 8\pi .
k=\frac{8x+3\pi }{8\pi }
Dividing by 8\pi undoes the multiplication by 8\pi .
k=\frac{x}{\pi }+\frac{3}{8}
Divide 8x+3\pi by 8\pi .
8x+\pi =-2\pi +8k\pi
Multiply both sides of the equation by 4, the least common multiple of 4,2.
8x=-2\pi +8k\pi -\pi
Subtract \pi from both sides.
8x=-3\pi +8k\pi
Combine -2\pi and -\pi to get -3\pi .
8x=8\pi k-3\pi
The equation is in standard form.
\frac{8x}{8}=\frac{\pi \left(8k-3\right)}{8}
Divide both sides by 8.
x=\frac{\pi \left(8k-3\right)}{8}
Dividing by 8 undoes the multiplication by 8.
x=\pi k-\frac{3\pi }{8}
Divide \pi \left(-3+8k\right) by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}