Solve for n
n=-\frac{w+1}{w-1}
w\neq 1
Solve for w
w=-\frac{1-n}{n+1}
n\neq -1
Share
Copied to clipboard
2w+wn-w-n+1=0
Use the distributive property to multiply w-1 by n-1.
w+wn-n+1=0
Combine 2w and -w to get w.
wn-n+1=-w
Subtract w from both sides. Anything subtracted from zero gives its negation.
wn-n=-w-1
Subtract 1 from both sides.
\left(w-1\right)n=-w-1
Combine all terms containing n.
\frac{\left(w-1\right)n}{w-1}=\frac{-w-1}{w-1}
Divide both sides by w-1.
n=\frac{-w-1}{w-1}
Dividing by w-1 undoes the multiplication by w-1.
n=-\frac{w+1}{w-1}
Divide -w-1 by w-1.
2w+wn-w-n+1=0
Use the distributive property to multiply w-1 by n-1.
w+wn-n+1=0
Combine 2w and -w to get w.
w+wn+1=n
Add n to both sides. Anything plus zero gives itself.
w+wn=n-1
Subtract 1 from both sides.
\left(1+n\right)w=n-1
Combine all terms containing w.
\left(n+1\right)w=n-1
The equation is in standard form.
\frac{\left(n+1\right)w}{n+1}=\frac{n-1}{n+1}
Divide both sides by 1+n.
w=\frac{n-1}{n+1}
Dividing by 1+n undoes the multiplication by 1+n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}