Solve for v
v=-4
v=5
Share
Copied to clipboard
2v^{2}-40-2v=0
Subtract 2v from both sides.
v^{2}-20-v=0
Divide both sides by 2.
v^{2}-v-20=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-1 ab=1\left(-20\right)=-20
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as v^{2}+av+bv-20. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-5 b=4
The solution is the pair that gives sum -1.
\left(v^{2}-5v\right)+\left(4v-20\right)
Rewrite v^{2}-v-20 as \left(v^{2}-5v\right)+\left(4v-20\right).
v\left(v-5\right)+4\left(v-5\right)
Factor out v in the first and 4 in the second group.
\left(v-5\right)\left(v+4\right)
Factor out common term v-5 by using distributive property.
v=5 v=-4
To find equation solutions, solve v-5=0 and v+4=0.
2v^{2}-40-2v=0
Subtract 2v from both sides.
2v^{2}-2v-40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-40\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-40\right)}}{2\times 2}
Square -2.
v=\frac{-\left(-2\right)±\sqrt{4-8\left(-40\right)}}{2\times 2}
Multiply -4 times 2.
v=\frac{-\left(-2\right)±\sqrt{4+320}}{2\times 2}
Multiply -8 times -40.
v=\frac{-\left(-2\right)±\sqrt{324}}{2\times 2}
Add 4 to 320.
v=\frac{-\left(-2\right)±18}{2\times 2}
Take the square root of 324.
v=\frac{2±18}{2\times 2}
The opposite of -2 is 2.
v=\frac{2±18}{4}
Multiply 2 times 2.
v=\frac{20}{4}
Now solve the equation v=\frac{2±18}{4} when ± is plus. Add 2 to 18.
v=5
Divide 20 by 4.
v=-\frac{16}{4}
Now solve the equation v=\frac{2±18}{4} when ± is minus. Subtract 18 from 2.
v=-4
Divide -16 by 4.
v=5 v=-4
The equation is now solved.
2v^{2}-40-2v=0
Subtract 2v from both sides.
2v^{2}-2v=40
Add 40 to both sides. Anything plus zero gives itself.
\frac{2v^{2}-2v}{2}=\frac{40}{2}
Divide both sides by 2.
v^{2}+\left(-\frac{2}{2}\right)v=\frac{40}{2}
Dividing by 2 undoes the multiplication by 2.
v^{2}-v=\frac{40}{2}
Divide -2 by 2.
v^{2}-v=20
Divide 40 by 2.
v^{2}-v+\left(-\frac{1}{2}\right)^{2}=20+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-v+\frac{1}{4}=20+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
v^{2}-v+\frac{1}{4}=\frac{81}{4}
Add 20 to \frac{1}{4}.
\left(v-\frac{1}{2}\right)^{2}=\frac{81}{4}
Factor v^{2}-v+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
v-\frac{1}{2}=\frac{9}{2} v-\frac{1}{2}=-\frac{9}{2}
Simplify.
v=5 v=-4
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}