Solve for u
u=\frac{3\left(v+4\right)}{2}
Solve for v
v=\frac{2\left(u-6\right)}{3}
Share
Copied to clipboard
2u=12+3v
Add 3v to both sides.
2u=3v+12
The equation is in standard form.
\frac{2u}{2}=\frac{3v+12}{2}
Divide both sides by 2.
u=\frac{3v+12}{2}
Dividing by 2 undoes the multiplication by 2.
u=\frac{3v}{2}+6
Divide 12+3v by 2.
-3v=12-2u
Subtract 2u from both sides.
\frac{-3v}{-3}=\frac{12-2u}{-3}
Divide both sides by -3.
v=\frac{12-2u}{-3}
Dividing by -3 undoes the multiplication by -3.
v=\frac{2u}{3}-4
Divide 12-2u by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}