Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

2u^{2}-\frac{17}{8}=0
Subtract \frac{1}{8} from -2 to get -\frac{17}{8}.
2u^{2}=\frac{17}{8}
Add \frac{17}{8} to both sides. Anything plus zero gives itself.
u^{2}=\frac{\frac{17}{8}}{2}
Divide both sides by 2.
u^{2}=\frac{17}{8\times 2}
Express \frac{\frac{17}{8}}{2} as a single fraction.
u^{2}=\frac{17}{16}
Multiply 8 and 2 to get 16.
u=\frac{\sqrt{17}}{4} u=-\frac{\sqrt{17}}{4}
Take the square root of both sides of the equation.
2u^{2}-\frac{17}{8}=0
Subtract \frac{1}{8} from -2 to get -\frac{17}{8}.
u=\frac{0±\sqrt{0^{2}-4\times 2\left(-\frac{17}{8}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -\frac{17}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{0±\sqrt{-4\times 2\left(-\frac{17}{8}\right)}}{2\times 2}
Square 0.
u=\frac{0±\sqrt{-8\left(-\frac{17}{8}\right)}}{2\times 2}
Multiply -4 times 2.
u=\frac{0±\sqrt{17}}{2\times 2}
Multiply -8 times -\frac{17}{8}.
u=\frac{0±\sqrt{17}}{4}
Multiply 2 times 2.
u=\frac{\sqrt{17}}{4}
Now solve the equation u=\frac{0±\sqrt{17}}{4} when ± is plus.
u=-\frac{\sqrt{17}}{4}
Now solve the equation u=\frac{0±\sqrt{17}}{4} when ± is minus.
u=\frac{\sqrt{17}}{4} u=-\frac{\sqrt{17}}{4}
The equation is now solved.