Evaluate
-2t^{2}-4t-7
Expand
-2t^{2}-4t-7
Share
Copied to clipboard
2t-\left(7-2\left(t-\left(4t+t^{2}\right)\right)\right)
Use the distributive property to multiply t by 4+t.
2t-\left(7-2\left(t-4t-t^{2}\right)\right)
To find the opposite of 4t+t^{2}, find the opposite of each term.
2t-\left(7-2\left(-3t-t^{2}\right)\right)
Combine t and -4t to get -3t.
2t-\left(7+6t+2t^{2}\right)
Use the distributive property to multiply -2 by -3t-t^{2}.
2t-7-6t-2t^{2}
To find the opposite of 7+6t+2t^{2}, find the opposite of each term.
-4t-7-2t^{2}
Combine 2t and -6t to get -4t.
2t-\left(7-2\left(t-\left(4t+t^{2}\right)\right)\right)
Use the distributive property to multiply t by 4+t.
2t-\left(7-2\left(t-4t-t^{2}\right)\right)
To find the opposite of 4t+t^{2}, find the opposite of each term.
2t-\left(7-2\left(-3t-t^{2}\right)\right)
Combine t and -4t to get -3t.
2t-\left(7+6t+2t^{2}\right)
Use the distributive property to multiply -2 by -3t-t^{2}.
2t-7-6t-2t^{2}
To find the opposite of 7+6t+2t^{2}, find the opposite of each term.
-4t-7-2t^{2}
Combine 2t and -6t to get -4t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}