Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t\left(2t-\frac{7}{2}\right)=0
Factor out t.
t=0 t=\frac{7}{4}
To find equation solutions, solve t=0 and 2t-\frac{7}{2}=0.
2t^{2}-\frac{7}{2}t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-\frac{7}{2}\right)±\sqrt{\left(-\frac{7}{2}\right)^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -\frac{7}{2} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{7}{2}\right)±\frac{7}{2}}{2\times 2}
Take the square root of \left(-\frac{7}{2}\right)^{2}.
t=\frac{\frac{7}{2}±\frac{7}{2}}{2\times 2}
The opposite of -\frac{7}{2} is \frac{7}{2}.
t=\frac{\frac{7}{2}±\frac{7}{2}}{4}
Multiply 2 times 2.
t=\frac{7}{4}
Now solve the equation t=\frac{\frac{7}{2}±\frac{7}{2}}{4} when ± is plus. Add \frac{7}{2} to \frac{7}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{0}{4}
Now solve the equation t=\frac{\frac{7}{2}±\frac{7}{2}}{4} when ± is minus. Subtract \frac{7}{2} from \frac{7}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=0
Divide 0 by 4.
t=\frac{7}{4} t=0
The equation is now solved.
2t^{2}-\frac{7}{2}t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2t^{2}-\frac{7}{2}t}{2}=\frac{0}{2}
Divide both sides by 2.
t^{2}+\left(-\frac{\frac{7}{2}}{2}\right)t=\frac{0}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}-\frac{7}{4}t=\frac{0}{2}
Divide -\frac{7}{2} by 2.
t^{2}-\frac{7}{4}t=0
Divide 0 by 2.
t^{2}-\frac{7}{4}t+\left(-\frac{7}{8}\right)^{2}=\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{7}{4}t+\frac{49}{64}=\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{7}{8}\right)^{2}=\frac{49}{64}
Factor t^{2}-\frac{7}{4}t+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Take the square root of both sides of the equation.
t-\frac{7}{8}=\frac{7}{8} t-\frac{7}{8}=-\frac{7}{8}
Simplify.
t=\frac{7}{4} t=0
Add \frac{7}{8} to both sides of the equation.