Solve for t
t=3\sqrt{2}+3\approx 7.242640687
t=3-3\sqrt{2}\approx -1.242640687
Share
Copied to clipboard
2t^{2}=t^{2}+6t+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+3\right)^{2}.
2t^{2}-t^{2}=6t+9
Subtract t^{2} from both sides.
t^{2}=6t+9
Combine 2t^{2} and -t^{2} to get t^{2}.
t^{2}-6t=9
Subtract 6t from both sides.
t^{2}-6t-9=0
Subtract 9 from both sides.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-9\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-6\right)±\sqrt{36-4\left(-9\right)}}{2}
Square -6.
t=\frac{-\left(-6\right)±\sqrt{36+36}}{2}
Multiply -4 times -9.
t=\frac{-\left(-6\right)±\sqrt{72}}{2}
Add 36 to 36.
t=\frac{-\left(-6\right)±6\sqrt{2}}{2}
Take the square root of 72.
t=\frac{6±6\sqrt{2}}{2}
The opposite of -6 is 6.
t=\frac{6\sqrt{2}+6}{2}
Now solve the equation t=\frac{6±6\sqrt{2}}{2} when ± is plus. Add 6 to 6\sqrt{2}.
t=3\sqrt{2}+3
Divide 6+6\sqrt{2} by 2.
t=\frac{6-6\sqrt{2}}{2}
Now solve the equation t=\frac{6±6\sqrt{2}}{2} when ± is minus. Subtract 6\sqrt{2} from 6.
t=3-3\sqrt{2}
Divide 6-6\sqrt{2} by 2.
t=3\sqrt{2}+3 t=3-3\sqrt{2}
The equation is now solved.
2t^{2}=t^{2}+6t+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+3\right)^{2}.
2t^{2}-t^{2}=6t+9
Subtract t^{2} from both sides.
t^{2}=6t+9
Combine 2t^{2} and -t^{2} to get t^{2}.
t^{2}-6t=9
Subtract 6t from both sides.
t^{2}-6t+\left(-3\right)^{2}=9+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-6t+9=9+9
Square -3.
t^{2}-6t+9=18
Add 9 to 9.
\left(t-3\right)^{2}=18
Factor t^{2}-6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-3\right)^{2}}=\sqrt{18}
Take the square root of both sides of the equation.
t-3=3\sqrt{2} t-3=-3\sqrt{2}
Simplify.
t=3\sqrt{2}+3 t=3-3\sqrt{2}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}