Solve for t
t=\sqrt{6}-0.5\approx 1.949489743
t=-\sqrt{6}-0.5\approx -2.949489743
Share
Copied to clipboard
2t^{2}+2t-11.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2±\sqrt{2^{2}-4\times 2\left(-11.5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -11.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\times 2\left(-11.5\right)}}{2\times 2}
Square 2.
t=\frac{-2±\sqrt{4-8\left(-11.5\right)}}{2\times 2}
Multiply -4 times 2.
t=\frac{-2±\sqrt{4+92}}{2\times 2}
Multiply -8 times -11.5.
t=\frac{-2±\sqrt{96}}{2\times 2}
Add 4 to 92.
t=\frac{-2±4\sqrt{6}}{2\times 2}
Take the square root of 96.
t=\frac{-2±4\sqrt{6}}{4}
Multiply 2 times 2.
t=\frac{4\sqrt{6}-2}{4}
Now solve the equation t=\frac{-2±4\sqrt{6}}{4} when ± is plus. Add -2 to 4\sqrt{6}.
t=\sqrt{6}-\frac{1}{2}
Divide -2+4\sqrt{6} by 4.
t=\frac{-4\sqrt{6}-2}{4}
Now solve the equation t=\frac{-2±4\sqrt{6}}{4} when ± is minus. Subtract 4\sqrt{6} from -2.
t=-\sqrt{6}-\frac{1}{2}
Divide -2-4\sqrt{6} by 4.
t=\sqrt{6}-\frac{1}{2} t=-\sqrt{6}-\frac{1}{2}
The equation is now solved.
2t^{2}+2t-11.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2t^{2}+2t-11.5-\left(-11.5\right)=-\left(-11.5\right)
Add 11.5 to both sides of the equation.
2t^{2}+2t=-\left(-11.5\right)
Subtracting -11.5 from itself leaves 0.
2t^{2}+2t=11.5
Subtract -11.5 from 0.
\frac{2t^{2}+2t}{2}=\frac{11.5}{2}
Divide both sides by 2.
t^{2}+\frac{2}{2}t=\frac{11.5}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}+t=\frac{11.5}{2}
Divide 2 by 2.
t^{2}+t=5.75
Divide 11.5 by 2.
t^{2}+t+\left(\frac{1}{2}\right)^{2}=5.75+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+t+\frac{1}{4}=\frac{23+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+t+\frac{1}{4}=6
Add 5.75 to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{1}{2}\right)^{2}=6
Factor t^{2}+t+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{2}\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
t+\frac{1}{2}=\sqrt{6} t+\frac{1}{2}=-\sqrt{6}
Simplify.
t=\sqrt{6}-\frac{1}{2} t=-\sqrt{6}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}