Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

s^{2}\left(2s+3\right)-9\left(2s+3\right)
Do the grouping 2s^{3}-27-18s+3s^{2}=\left(2s^{3}+3s^{2}\right)+\left(-18s-27\right), and factor out s^{2} in the first and -9 in the second group.
\left(2s+3\right)\left(s^{2}-9\right)
Factor out common term 2s+3 by using distributive property.
\left(s-3\right)\left(s+3\right)
Consider s^{2}-9. Rewrite s^{2}-9 as s^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(s-3\right)\left(s+3\right)\left(2s+3\right)
Rewrite the complete factored expression.