Solve for r
r>-5
Share
Copied to clipboard
2r-3r-6<2r+9
Use the distributive property to multiply -3 by r+2.
-r-6<2r+9
Combine 2r and -3r to get -r.
-r-6-2r<9
Subtract 2r from both sides.
-3r-6<9
Combine -r and -2r to get -3r.
-3r<9+6
Add 6 to both sides.
-3r<15
Add 9 and 6 to get 15.
r>\frac{15}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
r>-5
Divide 15 by -3 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}