Solve for r
r=-13
r=5
Share
Copied to clipboard
2r^{2}+16r=130
Use the distributive property to multiply 2r by r+8.
2r^{2}+16r-130=0
Subtract 130 from both sides.
r=\frac{-16±\sqrt{16^{2}-4\times 2\left(-130\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and -130 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-16±\sqrt{256-4\times 2\left(-130\right)}}{2\times 2}
Square 16.
r=\frac{-16±\sqrt{256-8\left(-130\right)}}{2\times 2}
Multiply -4 times 2.
r=\frac{-16±\sqrt{256+1040}}{2\times 2}
Multiply -8 times -130.
r=\frac{-16±\sqrt{1296}}{2\times 2}
Add 256 to 1040.
r=\frac{-16±36}{2\times 2}
Take the square root of 1296.
r=\frac{-16±36}{4}
Multiply 2 times 2.
r=\frac{20}{4}
Now solve the equation r=\frac{-16±36}{4} when ± is plus. Add -16 to 36.
r=5
Divide 20 by 4.
r=-\frac{52}{4}
Now solve the equation r=\frac{-16±36}{4} when ± is minus. Subtract 36 from -16.
r=-13
Divide -52 by 4.
r=5 r=-13
The equation is now solved.
2r^{2}+16r=130
Use the distributive property to multiply 2r by r+8.
\frac{2r^{2}+16r}{2}=\frac{130}{2}
Divide both sides by 2.
r^{2}+\frac{16}{2}r=\frac{130}{2}
Dividing by 2 undoes the multiplication by 2.
r^{2}+8r=\frac{130}{2}
Divide 16 by 2.
r^{2}+8r=65
Divide 130 by 2.
r^{2}+8r+4^{2}=65+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+8r+16=65+16
Square 4.
r^{2}+8r+16=81
Add 65 to 16.
\left(r+4\right)^{2}=81
Factor r^{2}+8r+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+4\right)^{2}}=\sqrt{81}
Take the square root of both sides of the equation.
r+4=9 r+4=-9
Simplify.
r=5 r=-13
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}