Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

q^{2}-2q-8=0
Divide both sides by 2.
a+b=-2 ab=1\left(-8\right)=-8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as q^{2}+aq+bq-8. To find a and b, set up a system to be solved.
1,-8 2,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -8.
1-8=-7 2-4=-2
Calculate the sum for each pair.
a=-4 b=2
The solution is the pair that gives sum -2.
\left(q^{2}-4q\right)+\left(2q-8\right)
Rewrite q^{2}-2q-8 as \left(q^{2}-4q\right)+\left(2q-8\right).
q\left(q-4\right)+2\left(q-4\right)
Factor out q in the first and 2 in the second group.
\left(q-4\right)\left(q+2\right)
Factor out common term q-4 by using distributive property.
q=4 q=-2
To find equation solutions, solve q-4=0 and q+2=0.
2q^{2}-4q-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-16\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-16\right)}}{2\times 2}
Square -4.
q=\frac{-\left(-4\right)±\sqrt{16-8\left(-16\right)}}{2\times 2}
Multiply -4 times 2.
q=\frac{-\left(-4\right)±\sqrt{16+128}}{2\times 2}
Multiply -8 times -16.
q=\frac{-\left(-4\right)±\sqrt{144}}{2\times 2}
Add 16 to 128.
q=\frac{-\left(-4\right)±12}{2\times 2}
Take the square root of 144.
q=\frac{4±12}{2\times 2}
The opposite of -4 is 4.
q=\frac{4±12}{4}
Multiply 2 times 2.
q=\frac{16}{4}
Now solve the equation q=\frac{4±12}{4} when ± is plus. Add 4 to 12.
q=4
Divide 16 by 4.
q=-\frac{8}{4}
Now solve the equation q=\frac{4±12}{4} when ± is minus. Subtract 12 from 4.
q=-2
Divide -8 by 4.
q=4 q=-2
The equation is now solved.
2q^{2}-4q-16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2q^{2}-4q-16-\left(-16\right)=-\left(-16\right)
Add 16 to both sides of the equation.
2q^{2}-4q=-\left(-16\right)
Subtracting -16 from itself leaves 0.
2q^{2}-4q=16
Subtract -16 from 0.
\frac{2q^{2}-4q}{2}=\frac{16}{2}
Divide both sides by 2.
q^{2}+\left(-\frac{4}{2}\right)q=\frac{16}{2}
Dividing by 2 undoes the multiplication by 2.
q^{2}-2q=\frac{16}{2}
Divide -4 by 2.
q^{2}-2q=8
Divide 16 by 2.
q^{2}-2q+1=8+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-2q+1=9
Add 8 to 1.
\left(q-1\right)^{2}=9
Factor q^{2}-2q+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-1\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
q-1=3 q-1=-3
Simplify.
q=4 q=-2
Add 1 to both sides of the equation.
x ^ 2 -2x -8 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = 2 rs = -8
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = -8
To solve for unknown quantity u, substitute these in the product equation rs = -8
1 - u^2 = -8
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -8-1 = -9
Simplify the expression by subtracting 1 on both sides
u^2 = 9 u = \pm\sqrt{9} = \pm 3
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - 3 = -2 s = 1 + 3 = 4
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.