Skip to main content
Solve for p (complex solution)
Tick mark Image
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

2p^{2}+16p=78
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2p^{2}+16p-78=78-78
Subtract 78 from both sides of the equation.
2p^{2}+16p-78=0
Subtracting 78 from itself leaves 0.
p=\frac{-16±\sqrt{16^{2}-4\times 2\left(-78\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and -78 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-16±\sqrt{256-4\times 2\left(-78\right)}}{2\times 2}
Square 16.
p=\frac{-16±\sqrt{256-8\left(-78\right)}}{2\times 2}
Multiply -4 times 2.
p=\frac{-16±\sqrt{256+624}}{2\times 2}
Multiply -8 times -78.
p=\frac{-16±\sqrt{880}}{2\times 2}
Add 256 to 624.
p=\frac{-16±4\sqrt{55}}{2\times 2}
Take the square root of 880.
p=\frac{-16±4\sqrt{55}}{4}
Multiply 2 times 2.
p=\frac{4\sqrt{55}-16}{4}
Now solve the equation p=\frac{-16±4\sqrt{55}}{4} when ± is plus. Add -16 to 4\sqrt{55}.
p=\sqrt{55}-4
Divide -16+4\sqrt{55} by 4.
p=\frac{-4\sqrt{55}-16}{4}
Now solve the equation p=\frac{-16±4\sqrt{55}}{4} when ± is minus. Subtract 4\sqrt{55} from -16.
p=-\sqrt{55}-4
Divide -16-4\sqrt{55} by 4.
p=\sqrt{55}-4 p=-\sqrt{55}-4
The equation is now solved.
2p^{2}+16p=78
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2p^{2}+16p}{2}=\frac{78}{2}
Divide both sides by 2.
p^{2}+\frac{16}{2}p=\frac{78}{2}
Dividing by 2 undoes the multiplication by 2.
p^{2}+8p=\frac{78}{2}
Divide 16 by 2.
p^{2}+8p=39
Divide 78 by 2.
p^{2}+8p+4^{2}=39+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+8p+16=39+16
Square 4.
p^{2}+8p+16=55
Add 39 to 16.
\left(p+4\right)^{2}=55
Factor p^{2}+8p+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+4\right)^{2}}=\sqrt{55}
Take the square root of both sides of the equation.
p+4=\sqrt{55} p+4=-\sqrt{55}
Simplify.
p=\sqrt{55}-4 p=-\sqrt{55}-4
Subtract 4 from both sides of the equation.
2p^{2}+16p=78
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2p^{2}+16p-78=78-78
Subtract 78 from both sides of the equation.
2p^{2}+16p-78=0
Subtracting 78 from itself leaves 0.
p=\frac{-16±\sqrt{16^{2}-4\times 2\left(-78\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and -78 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-16±\sqrt{256-4\times 2\left(-78\right)}}{2\times 2}
Square 16.
p=\frac{-16±\sqrt{256-8\left(-78\right)}}{2\times 2}
Multiply -4 times 2.
p=\frac{-16±\sqrt{256+624}}{2\times 2}
Multiply -8 times -78.
p=\frac{-16±\sqrt{880}}{2\times 2}
Add 256 to 624.
p=\frac{-16±4\sqrt{55}}{2\times 2}
Take the square root of 880.
p=\frac{-16±4\sqrt{55}}{4}
Multiply 2 times 2.
p=\frac{4\sqrt{55}-16}{4}
Now solve the equation p=\frac{-16±4\sqrt{55}}{4} when ± is plus. Add -16 to 4\sqrt{55}.
p=\sqrt{55}-4
Divide -16+4\sqrt{55} by 4.
p=\frac{-4\sqrt{55}-16}{4}
Now solve the equation p=\frac{-16±4\sqrt{55}}{4} when ± is minus. Subtract 4\sqrt{55} from -16.
p=-\sqrt{55}-4
Divide -16-4\sqrt{55} by 4.
p=\sqrt{55}-4 p=-\sqrt{55}-4
The equation is now solved.
2p^{2}+16p=78
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2p^{2}+16p}{2}=\frac{78}{2}
Divide both sides by 2.
p^{2}+\frac{16}{2}p=\frac{78}{2}
Dividing by 2 undoes the multiplication by 2.
p^{2}+8p=\frac{78}{2}
Divide 16 by 2.
p^{2}+8p=39
Divide 78 by 2.
p^{2}+8p+4^{2}=39+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+8p+16=39+16
Square 4.
p^{2}+8p+16=55
Add 39 to 16.
\left(p+4\right)^{2}=55
Factor p^{2}+8p+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+4\right)^{2}}=\sqrt{55}
Take the square root of both sides of the equation.
p+4=\sqrt{55} p+4=-\sqrt{55}
Simplify.
p=\sqrt{55}-4 p=-\sqrt{55}-4
Subtract 4 from both sides of the equation.