Solve for p
p=15
Share
Copied to clipboard
2p=\left(\frac{\frac{1}{2}+\frac{1}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
2p=\left(\frac{\frac{3}{6}+\frac{1}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
2p=\left(\frac{\frac{3+1}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Since \frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
2p=\left(\frac{\frac{4}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Add 3 and 1 to get 4.
2p=\left(\frac{\frac{2}{3}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
2p=\left(\frac{\frac{2}{3}}{\frac{25}{45}-\frac{6}{45}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Least common multiple of 9 and 15 is 45. Convert \frac{5}{9} and \frac{2}{15} to fractions with denominator 45.
2p=\left(\frac{\frac{2}{3}}{\frac{25-6}{45}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Since \frac{25}{45} and \frac{6}{45} have the same denominator, subtract them by subtracting their numerators.
2p=\left(\frac{\frac{2}{3}}{\frac{19}{45}}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Subtract 6 from 25 to get 19.
2p=\left(\frac{2}{3}\times \frac{45}{19}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Divide \frac{2}{3} by \frac{19}{45} by multiplying \frac{2}{3} by the reciprocal of \frac{19}{45}.
2p=\left(\frac{2\times 45}{3\times 19}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Multiply \frac{2}{3} times \frac{45}{19} by multiplying numerator times numerator and denominator times denominator.
2p=\left(\frac{90}{57}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Do the multiplications in the fraction \frac{2\times 45}{3\times 19}.
2p=\left(\frac{30}{19}\times \frac{38}{7}-\frac{30}{7}\right)\times 7
Reduce the fraction \frac{90}{57} to lowest terms by extracting and canceling out 3.
2p=\left(\frac{30\times 38}{19\times 7}-\frac{30}{7}\right)\times 7
Multiply \frac{30}{19} times \frac{38}{7} by multiplying numerator times numerator and denominator times denominator.
2p=\left(\frac{1140}{133}-\frac{30}{7}\right)\times 7
Do the multiplications in the fraction \frac{30\times 38}{19\times 7}.
2p=\left(\frac{60}{7}-\frac{30}{7}\right)\times 7
Reduce the fraction \frac{1140}{133} to lowest terms by extracting and canceling out 19.
2p=\frac{60-30}{7}\times 7
Since \frac{60}{7} and \frac{30}{7} have the same denominator, subtract them by subtracting their numerators.
2p=\frac{30}{7}\times 7
Subtract 30 from 60 to get 30.
2p=30
Cancel out 7 and 7.
p=\frac{30}{2}
Divide both sides by 2.
p=15
Divide 30 by 2 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}