Solve for n
n=\frac{9}{14}\approx 0.642857143
Quiz
Linear Equation
5 problems similar to:
2 n - \frac { 3 } { 4 } + 2 - 5 n = \frac { 1 } { 2 } n - 1
Share
Copied to clipboard
2n-\frac{3}{4}+\frac{8}{4}-5n=\frac{1}{2}n-1
Convert 2 to fraction \frac{8}{4}.
2n+\frac{-3+8}{4}-5n=\frac{1}{2}n-1
Since -\frac{3}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
2n+\frac{5}{4}-5n=\frac{1}{2}n-1
Add -3 and 8 to get 5.
-3n+\frac{5}{4}=\frac{1}{2}n-1
Combine 2n and -5n to get -3n.
-3n+\frac{5}{4}-\frac{1}{2}n=-1
Subtract \frac{1}{2}n from both sides.
-\frac{7}{2}n+\frac{5}{4}=-1
Combine -3n and -\frac{1}{2}n to get -\frac{7}{2}n.
-\frac{7}{2}n=-1-\frac{5}{4}
Subtract \frac{5}{4} from both sides.
-\frac{7}{2}n=-\frac{4}{4}-\frac{5}{4}
Convert -1 to fraction -\frac{4}{4}.
-\frac{7}{2}n=\frac{-4-5}{4}
Since -\frac{4}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{2}n=-\frac{9}{4}
Subtract 5 from -4 to get -9.
n=-\frac{9}{4}\left(-\frac{2}{7}\right)
Multiply both sides by -\frac{2}{7}, the reciprocal of -\frac{7}{2}.
n=\frac{-9\left(-2\right)}{4\times 7}
Multiply -\frac{9}{4} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
n=\frac{18}{28}
Do the multiplications in the fraction \frac{-9\left(-2\right)}{4\times 7}.
n=\frac{9}{14}
Reduce the fraction \frac{18}{28} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}