Solve for m
m\in (-\infty,\frac{1}{2}]\cup [1,\infty)
Share
Copied to clipboard
2m^{2}-3m+1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\times 1}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -3 for b, and 1 for c in the quadratic formula.
m=\frac{3±1}{4}
Do the calculations.
m=1 m=\frac{1}{2}
Solve the equation m=\frac{3±1}{4} when ± is plus and when ± is minus.
2\left(m-1\right)\left(m-\frac{1}{2}\right)\geq 0
Rewrite the inequality by using the obtained solutions.
m-1\leq 0 m-\frac{1}{2}\leq 0
For the product to be ≥0, m-1 and m-\frac{1}{2} have to be both ≤0 or both ≥0. Consider the case when m-1 and m-\frac{1}{2} are both ≤0.
m\leq \frac{1}{2}
The solution satisfying both inequalities is m\leq \frac{1}{2}.
m-\frac{1}{2}\geq 0 m-1\geq 0
Consider the case when m-1 and m-\frac{1}{2} are both ≥0.
m\geq 1
The solution satisfying both inequalities is m\geq 1.
m\leq \frac{1}{2}\text{; }m\geq 1
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}