Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

2m^{2}-14=5m
Subtract 14 from both sides.
2m^{2}-14-5m=0
Subtract 5m from both sides.
2m^{2}-5m-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -5 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-14\right)}}{2\times 2}
Square -5.
m=\frac{-\left(-5\right)±\sqrt{25-8\left(-14\right)}}{2\times 2}
Multiply -4 times 2.
m=\frac{-\left(-5\right)±\sqrt{25+112}}{2\times 2}
Multiply -8 times -14.
m=\frac{-\left(-5\right)±\sqrt{137}}{2\times 2}
Add 25 to 112.
m=\frac{5±\sqrt{137}}{2\times 2}
The opposite of -5 is 5.
m=\frac{5±\sqrt{137}}{4}
Multiply 2 times 2.
m=\frac{\sqrt{137}+5}{4}
Now solve the equation m=\frac{5±\sqrt{137}}{4} when ± is plus. Add 5 to \sqrt{137}.
m=\frac{5-\sqrt{137}}{4}
Now solve the equation m=\frac{5±\sqrt{137}}{4} when ± is minus. Subtract \sqrt{137} from 5.
m=\frac{\sqrt{137}+5}{4} m=\frac{5-\sqrt{137}}{4}
The equation is now solved.
2m^{2}-5m=14
Subtract 5m from both sides.
\frac{2m^{2}-5m}{2}=\frac{14}{2}
Divide both sides by 2.
m^{2}-\frac{5}{2}m=\frac{14}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}-\frac{5}{2}m=7
Divide 14 by 2.
m^{2}-\frac{5}{2}m+\left(-\frac{5}{4}\right)^{2}=7+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{5}{2}m+\frac{25}{16}=7+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{5}{2}m+\frac{25}{16}=\frac{137}{16}
Add 7 to \frac{25}{16}.
\left(m-\frac{5}{4}\right)^{2}=\frac{137}{16}
Factor m^{2}-\frac{5}{2}m+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{4}\right)^{2}}=\sqrt{\frac{137}{16}}
Take the square root of both sides of the equation.
m-\frac{5}{4}=\frac{\sqrt{137}}{4} m-\frac{5}{4}=-\frac{\sqrt{137}}{4}
Simplify.
m=\frac{\sqrt{137}+5}{4} m=\frac{5-\sqrt{137}}{4}
Add \frac{5}{4} to both sides of the equation.