Solve for g (complex solution)
\left\{\begin{matrix}g=-\frac{g_{2}}{4k}\text{, }&k\neq 0\\g\in \mathrm{C}\text{, }&g_{2}=0\text{ and }k=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=-\frac{g_{2}}{4k}\text{, }&k\neq 0\\g\in \mathrm{R}\text{, }&g_{2}=0\text{ and }k=0\end{matrix}\right.
Solve for g_2
g_{2}=-4gk
Share
Copied to clipboard
2kg=-0.5g_{2}
Multiply -1 and 0.5 to get -0.5.
2kg=-\frac{g_{2}}{2}
The equation is in standard form.
\frac{2kg}{2k}=-\frac{\frac{g_{2}}{2}}{2k}
Divide both sides by 2k.
g=-\frac{\frac{g_{2}}{2}}{2k}
Dividing by 2k undoes the multiplication by 2k.
g=-\frac{g_{2}}{4k}
Divide -\frac{g_{2}}{2} by 2k.
2kg=-0.5g_{2}
Multiply -1 and 0.5 to get -0.5.
2kg=-\frac{g_{2}}{2}
The equation is in standard form.
\frac{2kg}{2k}=-\frac{\frac{g_{2}}{2}}{2k}
Divide both sides by 2k.
g=-\frac{\frac{g_{2}}{2}}{2k}
Dividing by 2k undoes the multiplication by 2k.
g=-\frac{g_{2}}{4k}
Divide -\frac{g_{2}}{2} by 2k.
\left(-g_{2}\right)\times 0.5=2kg
Swap sides so that all variable terms are on the left hand side.
-0.5g_{2}=2kg
Multiply -1 and 0.5 to get -0.5.
-0.5g_{2}=2gk
The equation is in standard form.
\frac{-0.5g_{2}}{-0.5}=\frac{2gk}{-0.5}
Multiply both sides by -2.
g_{2}=\frac{2gk}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
g_{2}=-4gk
Divide 2kg by -0.5 by multiplying 2kg by the reciprocal of -0.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}