Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(2k+8k^{2}-7)
Combine 3k^{2} and 5k^{2} to get 8k^{2}.
8k^{2}+2k-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-2±\sqrt{2^{2}-4\times 8\left(-7\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-2±\sqrt{4-4\times 8\left(-7\right)}}{2\times 8}
Square 2.
k=\frac{-2±\sqrt{4-32\left(-7\right)}}{2\times 8}
Multiply -4 times 8.
k=\frac{-2±\sqrt{4+224}}{2\times 8}
Multiply -32 times -7.
k=\frac{-2±\sqrt{228}}{2\times 8}
Add 4 to 224.
k=\frac{-2±2\sqrt{57}}{2\times 8}
Take the square root of 228.
k=\frac{-2±2\sqrt{57}}{16}
Multiply 2 times 8.
k=\frac{2\sqrt{57}-2}{16}
Now solve the equation k=\frac{-2±2\sqrt{57}}{16} when ± is plus. Add -2 to 2\sqrt{57}.
k=\frac{\sqrt{57}-1}{8}
Divide -2+2\sqrt{57} by 16.
k=\frac{-2\sqrt{57}-2}{16}
Now solve the equation k=\frac{-2±2\sqrt{57}}{16} when ± is minus. Subtract 2\sqrt{57} from -2.
k=\frac{-\sqrt{57}-1}{8}
Divide -2-2\sqrt{57} by 16.
8k^{2}+2k-7=8\left(k-\frac{\sqrt{57}-1}{8}\right)\left(k-\frac{-\sqrt{57}-1}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{57}}{8} for x_{1} and \frac{-1-\sqrt{57}}{8} for x_{2}.
2k+8k^{2}-7
Combine 3k^{2} and 5k^{2} to get 8k^{2}.