Solve for k (complex solution)
k=2\left(m+2\right)
m\neq -2\text{ and }m\neq 2
Solve for k
k=2\left(m+2\right)
|m|\neq 2
Solve for m
m=\frac{k-4}{2}
k\neq 0\text{ and }k\neq 8
Quiz
Linear Equation
5 problems similar to:
2 k + ( m - 2 ) \frac { - 2 k m } { m ^ { 2 } - 4 } - 8 = 0
Share
Copied to clipboard
2k\left(m-2\right)\left(m+2\right)+\left(m-2\right)\left(-2\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Multiply both sides of the equation by \left(m-2\right)\left(m+2\right).
\left(2km-4k\right)\left(m+2\right)+\left(m-2\right)\left(-2\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply 2k by m-2.
2km^{2}-8k+\left(m-2\right)\left(-2\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply 2km-4k by m+2 and combine like terms.
2km^{2}-8k+\left(-2m+4\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply m-2 by -2.
2km^{2}-8k+\left(-2mk+4k\right)m+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply -2m+4 by k.
2km^{2}-8k-2km^{2}+4km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply -2mk+4k by m.
-8k+4km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Combine 2km^{2} and -2km^{2} to get 0.
-8k+4km+\left(m^{2}-4\right)\left(-8\right)=0
Use the distributive property to multiply m-2 by m+2 and combine like terms.
-8k+4km-8m^{2}+32=0
Use the distributive property to multiply m^{2}-4 by -8.
-8k+4km+32=8m^{2}
Add 8m^{2} to both sides. Anything plus zero gives itself.
-8k+4km=8m^{2}-32
Subtract 32 from both sides.
\left(-8+4m\right)k=8m^{2}-32
Combine all terms containing k.
\left(4m-8\right)k=8m^{2}-32
The equation is in standard form.
\frac{\left(4m-8\right)k}{4m-8}=\frac{8m^{2}-32}{4m-8}
Divide both sides by -8+4m.
k=\frac{8m^{2}-32}{4m-8}
Dividing by -8+4m undoes the multiplication by -8+4m.
k=2m+4
Divide 8m^{2}-32 by -8+4m.
2k\left(m-2\right)\left(m+2\right)+\left(m-2\right)\left(-2\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Multiply both sides of the equation by \left(m-2\right)\left(m+2\right).
\left(2km-4k\right)\left(m+2\right)+\left(m-2\right)\left(-2\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply 2k by m-2.
2km^{2}-8k+\left(m-2\right)\left(-2\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply 2km-4k by m+2 and combine like terms.
2km^{2}-8k+\left(-2m+4\right)km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply m-2 by -2.
2km^{2}-8k+\left(-2mk+4k\right)m+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply -2m+4 by k.
2km^{2}-8k-2km^{2}+4km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Use the distributive property to multiply -2mk+4k by m.
-8k+4km+\left(m-2\right)\left(m+2\right)\left(-8\right)=0
Combine 2km^{2} and -2km^{2} to get 0.
-8k+4km+\left(m^{2}-4\right)\left(-8\right)=0
Use the distributive property to multiply m-2 by m+2 and combine like terms.
-8k+4km-8m^{2}+32=0
Use the distributive property to multiply m^{2}-4 by -8.
-8k+4km+32=8m^{2}
Add 8m^{2} to both sides. Anything plus zero gives itself.
-8k+4km=8m^{2}-32
Subtract 32 from both sides.
\left(-8+4m\right)k=8m^{2}-32
Combine all terms containing k.
\left(4m-8\right)k=8m^{2}-32
The equation is in standard form.
\frac{\left(4m-8\right)k}{4m-8}=\frac{8m^{2}-32}{4m-8}
Divide both sides by -8+4m.
k=\frac{8m^{2}-32}{4m-8}
Dividing by -8+4m undoes the multiplication by -8+4m.
k=2m+4
Divide 8m^{2}-32 by -8+4m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}