Solve for j (complex solution)
j=\frac{3\sqrt{2\left(k+4\right)}}{2}
Solve for j
j=\frac{3\sqrt{2\left(k+4\right)}}{2}
k\geq -4
Solve for k
k=\frac{2\left(j^{2}-18\right)}{9}
j\geq 0
Solve for k (complex solution)
k=\frac{2\left(j^{2}-18\right)}{9}
arg(j)<\pi \text{ or }j=0
Share
Copied to clipboard
2j=3\sqrt{2k+8}
The equation is in standard form.
\frac{2j}{2}=\frac{3\sqrt{2k+8}}{2}
Divide both sides by 2.
j=\frac{3\sqrt{2k+8}}{2}
Dividing by 2 undoes the multiplication by 2.
2j=3\sqrt{2k+8}
The equation is in standard form.
\frac{2j}{2}=\frac{3\sqrt{2k+8}}{2}
Divide both sides by 2.
j=\frac{3\sqrt{2k+8}}{2}
Dividing by 2 undoes the multiplication by 2.
3\sqrt{2k+8}=2j
Swap sides so that all variable terms are on the left hand side.
\frac{3\sqrt{2k+8}}{3}=\frac{2j}{3}
Divide both sides by 3.
\sqrt{2k+8}=\frac{2j}{3}
Dividing by 3 undoes the multiplication by 3.
2k+8=\frac{4j^{2}}{9}
Square both sides of the equation.
2k+8-8=\frac{4j^{2}}{9}-8
Subtract 8 from both sides of the equation.
2k=\frac{4j^{2}}{9}-8
Subtracting 8 from itself leaves 0.
\frac{2k}{2}=\frac{\frac{4j^{2}}{9}-8}{2}
Divide both sides by 2.
k=\frac{\frac{4j^{2}}{9}-8}{2}
Dividing by 2 undoes the multiplication by 2.
k=\frac{2j^{2}}{9}-4
Divide \frac{4j^{2}}{9}-8 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}