Solve for x
x=-\frac{iy}{2}+\left(-\frac{7}{10}+\frac{9}{10}i\right)
Solve for y
y=2ix+\left(\frac{9}{5}+\frac{7}{5}i\right)
Quiz
Complex Number
5 problems similar to:
2 i x - y = \frac { ( 3 - 2 i ) ( 1 + i ) } { i ( 1 + 2 i ) }
Share
Copied to clipboard
2ix-y=\frac{5+i}{i\left(1+2i\right)}
Multiply 3-2i and 1+i to get 5+i.
2ix-y=\frac{5+i}{-2+i}
Multiply i and 1+2i to get -2+i.
2ix-y=\frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}
Multiply both numerator and denominator of \frac{5+i}{-2+i} by the complex conjugate of the denominator, -2-i.
2ix-y=\frac{-9-7i}{5}
Do the multiplications in \frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}.
2ix-y=-\frac{9}{5}-\frac{7}{5}i
Divide -9-7i by 5 to get -\frac{9}{5}-\frac{7}{5}i.
2ix=-\frac{9}{5}-\frac{7}{5}i+y
Add y to both sides.
2ix=y+\left(-\frac{9}{5}-\frac{7}{5}i\right)
The equation is in standard form.
\frac{2ix}{2i}=\frac{y+\left(-\frac{9}{5}-\frac{7}{5}i\right)}{2i}
Divide both sides by 2i.
x=\frac{y+\left(-\frac{9}{5}-\frac{7}{5}i\right)}{2i}
Dividing by 2i undoes the multiplication by 2i.
x=-\frac{iy}{2}+\left(-\frac{7}{10}+\frac{9}{10}i\right)
Divide -\frac{9}{5}-\frac{7}{5}i+y by 2i.
2ix-y=\frac{5+i}{i\left(1+2i\right)}
Multiply 3-2i and 1+i to get 5+i.
2ix-y=\frac{5+i}{-2+i}
Multiply i and 1+2i to get -2+i.
2ix-y=\frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}
Multiply both numerator and denominator of \frac{5+i}{-2+i} by the complex conjugate of the denominator, -2-i.
2ix-y=\frac{-9-7i}{5}
Do the multiplications in \frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}.
2ix-y=-\frac{9}{5}-\frac{7}{5}i
Divide -9-7i by 5 to get -\frac{9}{5}-\frac{7}{5}i.
-y=-\frac{9}{5}-\frac{7}{5}i-2ix
Subtract 2ix from both sides.
\frac{-y}{-1}=\frac{-\frac{9}{5}-\frac{7}{5}i-2ix}{-1}
Divide both sides by -1.
y=\frac{-\frac{9}{5}-\frac{7}{5}i-2ix}{-1}
Dividing by -1 undoes the multiplication by -1.
y=2ix+\left(\frac{9}{5}+\frac{7}{5}i\right)
Divide -\frac{9}{5}-\frac{7}{5}i-2ix by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}