Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

2ix-y=\frac{5+i}{i\left(1+2i\right)}
Multiply 3-2i and 1+i to get 5+i.
2ix-y=\frac{5+i}{-2+i}
Multiply i and 1+2i to get -2+i.
2ix-y=\frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}
Multiply both numerator and denominator of \frac{5+i}{-2+i} by the complex conjugate of the denominator, -2-i.
2ix-y=\frac{-9-7i}{5}
Do the multiplications in \frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}.
2ix-y=-\frac{9}{5}-\frac{7}{5}i
Divide -9-7i by 5 to get -\frac{9}{5}-\frac{7}{5}i.
2ix=-\frac{9}{5}-\frac{7}{5}i+y
Add y to both sides.
2ix=y+\left(-\frac{9}{5}-\frac{7}{5}i\right)
The equation is in standard form.
\frac{2ix}{2i}=\frac{y+\left(-\frac{9}{5}-\frac{7}{5}i\right)}{2i}
Divide both sides by 2i.
x=\frac{y+\left(-\frac{9}{5}-\frac{7}{5}i\right)}{2i}
Dividing by 2i undoes the multiplication by 2i.
x=-\frac{iy}{2}+\left(-\frac{7}{10}+\frac{9}{10}i\right)
Divide -\frac{9}{5}-\frac{7}{5}i+y by 2i.
2ix-y=\frac{5+i}{i\left(1+2i\right)}
Multiply 3-2i and 1+i to get 5+i.
2ix-y=\frac{5+i}{-2+i}
Multiply i and 1+2i to get -2+i.
2ix-y=\frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}
Multiply both numerator and denominator of \frac{5+i}{-2+i} by the complex conjugate of the denominator, -2-i.
2ix-y=\frac{-9-7i}{5}
Do the multiplications in \frac{\left(5+i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}.
2ix-y=-\frac{9}{5}-\frac{7}{5}i
Divide -9-7i by 5 to get -\frac{9}{5}-\frac{7}{5}i.
-y=-\frac{9}{5}-\frac{7}{5}i-2ix
Subtract 2ix from both sides.
\frac{-y}{-1}=\frac{-\frac{9}{5}-\frac{7}{5}i-2ix}{-1}
Divide both sides by -1.
y=\frac{-\frac{9}{5}-\frac{7}{5}i-2ix}{-1}
Dividing by -1 undoes the multiplication by -1.
y=2ix+\left(\frac{9}{5}+\frac{7}{5}i\right)
Divide -\frac{9}{5}-\frac{7}{5}i-2ix by -1.