Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

f\left(2f+5\right)
Factor out f.
2f^{2}+5f=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
f=\frac{-5±\sqrt{5^{2}}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
f=\frac{-5±5}{2\times 2}
Take the square root of 5^{2}.
f=\frac{-5±5}{4}
Multiply 2 times 2.
f=\frac{0}{4}
Now solve the equation f=\frac{-5±5}{4} when ± is plus. Add -5 to 5.
f=0
Divide 0 by 4.
f=-\frac{10}{4}
Now solve the equation f=\frac{-5±5}{4} when ± is minus. Subtract 5 from -5.
f=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
2f^{2}+5f=2f\left(f-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{2} for x_{2}.
2f^{2}+5f=2f\left(f+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2f^{2}+5f=2f\times \frac{2f+5}{2}
Add \frac{5}{2} to f by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
2f^{2}+5f=f\left(2f+5\right)
Cancel out 2, the greatest common factor in 2 and 2.