Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

d\left(2d-6\right)=0
Factor out d.
d=0 d=3
To find equation solutions, solve d=0 and 2d-6=0.
2d^{2}-6d=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-6\right)±6}{2\times 2}
Take the square root of \left(-6\right)^{2}.
d=\frac{6±6}{2\times 2}
The opposite of -6 is 6.
d=\frac{6±6}{4}
Multiply 2 times 2.
d=\frac{12}{4}
Now solve the equation d=\frac{6±6}{4} when ± is plus. Add 6 to 6.
d=3
Divide 12 by 4.
d=\frac{0}{4}
Now solve the equation d=\frac{6±6}{4} when ± is minus. Subtract 6 from 6.
d=0
Divide 0 by 4.
d=3 d=0
The equation is now solved.
2d^{2}-6d=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2d^{2}-6d}{2}=\frac{0}{2}
Divide both sides by 2.
d^{2}+\left(-\frac{6}{2}\right)d=\frac{0}{2}
Dividing by 2 undoes the multiplication by 2.
d^{2}-3d=\frac{0}{2}
Divide -6 by 2.
d^{2}-3d=0
Divide 0 by 2.
d^{2}-3d+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-3d+\frac{9}{4}=\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(d-\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor d^{2}-3d+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
d-\frac{3}{2}=\frac{3}{2} d-\frac{3}{2}=-\frac{3}{2}
Simplify.
d=3 d=0
Add \frac{3}{2} to both sides of the equation.