Solve for c
c = \frac{41}{4} = 10\frac{1}{4} = 10.25
c=10
Share
Copied to clipboard
\left(2c-17\right)^{2}=\left(\sqrt{-121+13c}\right)^{2}
Square both sides of the equation.
4c^{2}-68c+289=\left(\sqrt{-121+13c}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2c-17\right)^{2}.
4c^{2}-68c+289=-121+13c
Calculate \sqrt{-121+13c} to the power of 2 and get -121+13c.
4c^{2}-68c+289-\left(-121\right)=13c
Subtract -121 from both sides.
4c^{2}-68c+289+121=13c
The opposite of -121 is 121.
4c^{2}-68c+289+121-13c=0
Subtract 13c from both sides.
4c^{2}-68c+410-13c=0
Add 289 and 121 to get 410.
4c^{2}-81c+410=0
Combine -68c and -13c to get -81c.
c=\frac{-\left(-81\right)±\sqrt{\left(-81\right)^{2}-4\times 4\times 410}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -81 for b, and 410 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-81\right)±\sqrt{6561-4\times 4\times 410}}{2\times 4}
Square -81.
c=\frac{-\left(-81\right)±\sqrt{6561-16\times 410}}{2\times 4}
Multiply -4 times 4.
c=\frac{-\left(-81\right)±\sqrt{6561-6560}}{2\times 4}
Multiply -16 times 410.
c=\frac{-\left(-81\right)±\sqrt{1}}{2\times 4}
Add 6561 to -6560.
c=\frac{-\left(-81\right)±1}{2\times 4}
Take the square root of 1.
c=\frac{81±1}{2\times 4}
The opposite of -81 is 81.
c=\frac{81±1}{8}
Multiply 2 times 4.
c=\frac{82}{8}
Now solve the equation c=\frac{81±1}{8} when ± is plus. Add 81 to 1.
c=\frac{41}{4}
Reduce the fraction \frac{82}{8} to lowest terms by extracting and canceling out 2.
c=\frac{80}{8}
Now solve the equation c=\frac{81±1}{8} when ± is minus. Subtract 1 from 81.
c=10
Divide 80 by 8.
c=\frac{41}{4} c=10
The equation is now solved.
2\times \frac{41}{4}-17=\sqrt{-121+13\times \frac{41}{4}}
Substitute \frac{41}{4} for c in the equation 2c-17=\sqrt{-121+13c}.
\frac{7}{2}=\frac{7}{2}
Simplify. The value c=\frac{41}{4} satisfies the equation.
2\times 10-17=\sqrt{-121+13\times 10}
Substitute 10 for c in the equation 2c-17=\sqrt{-121+13c}.
3=3
Simplify. The value c=10 satisfies the equation.
c=\frac{41}{4} c=10
List all solutions of 2c-17=\sqrt{13c-121}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}