Solve for a
a=n+c
Solve for c
c=a-n
Share
Copied to clipboard
2c+n=2a-m-n+m
To find the opposite of m+n, find the opposite of each term.
2c+n=2a-n
Combine -m and m to get 0.
2a-n=2c+n
Swap sides so that all variable terms are on the left hand side.
2a=2c+n+n
Add n to both sides.
2a=2c+2n
Combine n and n to get 2n.
2a=2n+2c
The equation is in standard form.
\frac{2a}{2}=\frac{2n+2c}{2}
Divide both sides by 2.
a=\frac{2n+2c}{2}
Dividing by 2 undoes the multiplication by 2.
a=n+c
Divide 2c+2n by 2.
2c+n=2a-m-n+m
To find the opposite of m+n, find the opposite of each term.
2c+n=2a-n
Combine -m and m to get 0.
2c=2a-n-n
Subtract n from both sides.
2c=2a-2n
Combine -n and -n to get -2n.
\frac{2c}{2}=\frac{2a-2n}{2}
Divide both sides by 2.
c=\frac{2a-2n}{2}
Dividing by 2 undoes the multiplication by 2.
c=a-n
Divide 2a-2n by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}