Solve for a
a=-2-\frac{3}{b}
b\neq 0
Solve for b
b=-\frac{3}{a+2}
a\neq -2
Share
Copied to clipboard
2b+3+ab=0
Add -3 and 6 to get 3.
3+ab=-2b
Subtract 2b from both sides. Anything subtracted from zero gives its negation.
ab=-2b-3
Subtract 3 from both sides.
ba=-2b-3
The equation is in standard form.
\frac{ba}{b}=\frac{-2b-3}{b}
Divide both sides by b.
a=\frac{-2b-3}{b}
Dividing by b undoes the multiplication by b.
a=-2-\frac{3}{b}
Divide -2b-3 by b.
2b+3+ab=0
Add -3 and 6 to get 3.
2b+ab=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(2+a\right)b=-3
Combine all terms containing b.
\left(a+2\right)b=-3
The equation is in standard form.
\frac{\left(a+2\right)b}{a+2}=-\frac{3}{a+2}
Divide both sides by 2+a.
b=-\frac{3}{a+2}
Dividing by 2+a undoes the multiplication by 2+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}