Solve for a
\left\{\begin{matrix}a=-\frac{b\left(r+t-2\right)}{2r+t-5}\text{, }&r\neq \frac{5-t}{2}\\a\in \mathrm{R}\text{, }&\left(r=3\text{ and }t=-1\right)\text{ or }\left(b=0\text{ and }r=\frac{5-t}{2}\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{a\left(2r+t-5\right)}{r+t-2}\text{, }&r\neq 2-t\\b\in \mathrm{R}\text{, }&\left(a=0\text{ and }r=2-t\right)\text{ or }\left(r=3\text{ and }t=-1\right)\end{matrix}\right.
Share
Copied to clipboard
2ar+rb+ta+tb-5a=2b
Subtract 5a from both sides.
2ar+ta+tb-5a=2b-rb
Subtract rb from both sides.
2ar+ta-5a=2b-rb-tb
Subtract tb from both sides.
\left(2r+t-5\right)a=2b-rb-tb
Combine all terms containing a.
\left(2r+t-5\right)a=2b-bt-br
The equation is in standard form.
\frac{\left(2r+t-5\right)a}{2r+t-5}=\frac{b\left(2-t-r\right)}{2r+t-5}
Divide both sides by 2r+t-5.
a=\frac{b\left(2-t-r\right)}{2r+t-5}
Dividing by 2r+t-5 undoes the multiplication by 2r+t-5.
2ar+rb+ta+tb-2b=5a
Subtract 2b from both sides.
rb+ta+tb-2b=5a-2ar
Subtract 2ar from both sides.
rb+tb-2b=5a-2ar-ta
Subtract ta from both sides.
\left(r+t-2\right)b=5a-2ar-ta
Combine all terms containing b.
\left(r+t-2\right)b=5a-at-2ar
The equation is in standard form.
\frac{\left(r+t-2\right)b}{r+t-2}=\frac{a\left(5-t-2r\right)}{r+t-2}
Divide both sides by -2+r+t.
b=\frac{a\left(5-t-2r\right)}{r+t-2}
Dividing by -2+r+t undoes the multiplication by -2+r+t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}