Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(a^{9}+27b^{12}\right)
Factor out 2.
\left(a^{3}+3b^{4}\right)\left(a^{6}-3a^{3}b^{4}+9b^{8}\right)
Consider a^{9}+27b^{12}. Rewrite a^{9}+27b^{12} as \left(a^{3}\right)^{3}+\left(3b^{4}\right)^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
2\left(a^{3}+3b^{4}\right)\left(a^{6}-3a^{3}b^{4}+9b^{8}\right)
Rewrite the complete factored expression.