Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2bc+a^{2}-b^{2}-c^{2}\right)\left(2bc-a^{2}+b^{2}+c^{2}\right)
Rewrite 2a^{2}b^{2}+2a^{2}c^{2}+2b^{2}c^{2}-a^{4}-b^{4}-c^{4} as \left(2bc\right)^{2}-\left(-a^{2}+b^{2}+c^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}-b^{2}+2bc-c^{2}\right)\left(-a^{2}+b^{2}+2bc+c^{2}\right)
Reorder the terms.
a^{2}-\left(b^{2}-2bc+c^{2}\right)
Consider a^{2}-b^{2}+2bc-c^{2}. Rewrite as difference of two terms.
a^{2}-\left(b-c\right)^{2}
Rewrite the terms as squares.
\left(a-b+c\right)\left(a+b-c\right)
The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(b+c-a\right)\left(b+c+a\right)
Consider -a^{2}+b^{2}+2bc+c^{2}. Rewrite -a^{2}+b^{2}+2bc+c^{2} as \left(b+c\right)^{2}-a^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-a+b+c\right)\left(a+b+c\right)
Reorder the terms.
\left(-a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)
Rewrite the complete factored expression.