Factor
\left(a+b-c\right)\left(a-b+c\right)\left(c+b-a\right)\left(a+b+c\right)
Evaluate
\left(-\left(c-a\right)^{2}+b^{2}\right)\left(\left(a+c\right)^{2}-b^{2}\right)
Share
Copied to clipboard
\left(2bc+a^{2}-b^{2}-c^{2}\right)\left(2bc-a^{2}+b^{2}+c^{2}\right)
Rewrite 2a^{2}b^{2}+2a^{2}c^{2}+2b^{2}c^{2}-a^{4}-b^{4}-c^{4} as \left(2bc\right)^{2}-\left(-a^{2}+b^{2}+c^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}-b^{2}+2bc-c^{2}\right)\left(-a^{2}+b^{2}+2bc+c^{2}\right)
Reorder the terms.
a^{2}-\left(b^{2}-2bc+c^{2}\right)
Consider a^{2}-b^{2}+2bc-c^{2}. Rewrite as difference of two terms.
a^{2}-\left(b-c\right)^{2}
Rewrite the terms as squares.
\left(a-b+c\right)\left(a+b-c\right)
The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(b+c-a\right)\left(b+c+a\right)
Consider -a^{2}+b^{2}+2bc+c^{2}. Rewrite -a^{2}+b^{2}+2bc+c^{2} as \left(b+c\right)^{2}-a^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-a+b+c\right)\left(a+b+c\right)
Reorder the terms.
\left(-a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}